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Our aim here is to sketch the very nice conjectural picture of the classification

of closed orientable 3 manifolds that emerged around 1980 as a consequence of geo-

metric work of Thurston and more topological results of Jaco-Shalen and Johannson

at the end of a long chain of topological developments going back 50 years or more.

A pleasant feature of 3 manifolds, in contrast to higher dimensions, is that there

is no essential difference between smooth, piecewise linear, and topological mani-

folds. It was shown by Bing and Moise in the 1950s that every topological 3-manifold

can be triangulated as a simplicial complex whose combinatorial type is unique up

to subdivision. And every triangulation of a 3 manifold can be taken to be a smooth

triangulation in some differential structure on the manifold, unique up to diffeomor-

phism. Thus every topological 3 manifold has a unique smooth structure, and the

classifications up to diffeomorphism and homeomorphism coincide. In what follows

we will deal with smooth manifolds and diffeomorphisms between them.

When we say “manifold” we will always mean “connected manifold”. For the

sake of simplicity we restrict attention to orientable manifolds, although with more

trouble the nonorientable case could be covered as well. The primary focus will be

on manifolds that are closed, that is, compact and without bounday, but from time to

time it will be natural to consider also compact manifolds with nonempty boundary.

The most powerful of the standard invariants of algebraic topology for distin-

guishing 3 manifolds is the fundamental group. This determines all the homology

groups of a closed orientable 3 manifold M . Namely, H1(M) is the abelianization of

π1(M) , and by Poincaré duality H2(M) is isomorphic to H1(M) which is H1(M) mod

torsion by the universal coefficient theorem. Since M is closed and orientable, H3(M)
is Z . All higher homology groups are zero, of course.

In particular, if M is a simply-connected closed 3 manifold, then M has the same

homology groups as the 3 sphere S3 . In fact M is homotopy equivalent to S3 . For

by the Hurewicz theorem π2(M) = H2(M) = 0 and π3(M) = H3(M) = Z . A generator

of π3(M) is represented by a map S3→M3 of degree one, inducing an isomorphism

on H3 = π3 . This means we have a map S3→M of simply-connected simplicial com-

plexes inducing isomorphisms on all homology groups, so by Whitehead’s theorem

the map is a homotopy equivalence. Thus a simply-connected closed 3 manifold is a

homotopy sphere. The Poincaré conjecture asserts that S3 is the only such manifold.

(It seems that Poincaré himself did not explicitly formulate this as a conjecture.) As

we shall see shortly, in the nonsimply-connected case there are many examples of

closed 3 manifolds with isomorphic fundamental groups that are not diffeomorphic.

Prime Decomposition

The first reduction of the classification problem is due to Kneser around 1930. If

a 3 manifold M contains an embedded sphere S2 (disjoint from the boundary of M ,

if M has a nonempty boundary) separating M into two components, we can split M
along this S2 into manifolds M1 and M2 each having this sphere as a component of

its boundary. We can then fill in these two boundary spheres with balls to produce

manifolds N1 and N2 that are closed if M was closed. One says M is the connected

sum of N1 and N2 , or in symbols, M = N1 ] N2 . This splitting operation is commu-

tative by definition, and it is not hard to check that it is also associative. One rather

trivial possibility for the splitting 2 sphere is as the boundary of a ball in M , and

this gives the decomposition M = M ] S3 . If this is the only way that M splits as a

connected sum, then M is said to be prime. This is equivalent to saying that every

separating 2 sphere in M bounds a ball in M .

A fundamental theorem of Alexander from 1924 says that every 2 sphere in S3

bounds a ball on each side. (We are assuming smoothness here, which rules out local

pathology as in the Alexander horned sphere.) Hence S3 is prime. Note that if this

were not true then there would be no prime 3 manifolds, although perhaps something

could be salvaged by redefining primeness to allow for units, as in algebra. Fortunately

this is not necessary. Of course, if S3 were not prime, then the Poincaré conjecture

would be false since a connected summand of a simply-connected manifold is also

simply-connected, as π1(M ]N) is the free product π1(M)∗π1(N) by van Kampen’s

theorem.

Kneser’s Theorem. Every compact orientable 3 manifold M factors as a connected

sum of primes, M = P1 ] ···]Pn , and this decomposition is unique up to insertion or

deletion of S3 summands.

If one assumes the Poincaré conjecture, then the existence of a prime decompo-

sition follows easily from the algebra fact that a finitely-generated group cannot be

split as a free product of an arbitrarily large number of nontrivial factors. Kneser’s

proof is noteworthy for being independent of the Poincaré conjecture. If there were

homotopy spheres other than S3 , they too could be decomposed uniquely as sums of

prime homotopy spheres.

At first glance one might think that the unique prime decomposition immediately

reduced the classification of closed oriented 3 manifolds to the classification of the

prime manifolds, but there is a small subtlety here: The prime factors Pi are uniquely

determined by M , but the converse need not be true. Given two manifolds P and Q



there are are two potentially different ways of forming their connected sum since after

removing the interior of a ball from each of P and Q , one could glue the two resulting

boundary spheres together by a diffeomorphism that either preserves or reverses cho-

sen orientations of the two 2 spheres. If either P or Q has a self-diffeomorphism that

reverses orientation, then the two gluings produce diffeomorphic connected sums, but

otherwise they will not. One way to avoid this ambiguity it to talk about manifolds that

are not just orientable but oriented. Then there is a unique way to form connected

sums respecting orientations, and Kneser’s theorem remains true for oriented mani-

folds. This reduces the classification problem to classifying oriented prime manifolds,

which in particular involves deciding for each prime orientable manifold P whether

there is a diffeomorphism P→P that reverses orientation.

It turns out that there exist many prime 3 manifolds that do not have orientation-

reversing self-diffeomorphisms. The two ways of forming the connected sum of two

such manifolds will produce nondiffeomorphic manifolds with isomorphic fundamen-

tal groups since the isomorphism π1(P ]Q) ≈ π1(P)∗π1(Q) is valid no matter how

the two summands are glued together.

Prime 3 manifolds that are closed and orientable can be lumped broadly into

three classes:

Type I: finite fundamental group. For such a manifold M the universal cover M̃ is

simply-connected and closed, hence a homotopy sphere. All the known examples

are spherical 3 manifolds, of the form M = S3/Γ for Γ a finite subgroup of SO(4)
acting freely on S3 by rotations. Thus S3 is the universal cover of M and Γ = π1(M) .
Spherical 3 manifolds were explicitly classified in the 1930s, using the fact that SO(4)
is a 2 sheeted covering group of SO(3)×SO(3) , so the finite subgroups of SO(4) can

be determined from the well-known finite subgroups of SO(3) . The examples withΓ cyclic are known as lens spaces, and there are also a few infinite families with Γ
noncylic, including Poincaré’s famous homology sphere, which can be defined as the

coset space SO(3)/I where I is the group of rotational symmetries of the icosahedron,

of order 60. Since the universal cover of SO(3) is S3 , a 2 sheeted cover, the quotient

SO(3)/I is S3/Γ for Γ the preimage of I in S3 , a group of order 120.

There is a lens space Lp/q for each fraction p/q between 0 and 1. The funda-

mental group of Lp/q is the cyclic group Zq , and two lens spaces Lp/q and Lp′/q′
are diffeomorphic if and only if q = q′ and p′ is congruent to ±p±1 mod q . For

example, if q is prime one obtains at least (q − 1)/4 nondiffeomorphic lens spaces

with the same fundamental group Zq . If orientations are taken into account, then the

condition p′ ≡ ±p±1 mod q becomes p′ ≡ p±1 mod q , so there are many lens spaces

without orientation-reversing self-diffeomorphisms, for example L1/3 . The spherical

manifolds that are not lens spaces are determined up to diffeomorphism by their

fundamental group.

It is an old conjecture that spherical 3 manifolds are the only closed 3 manifolds

with finite π1 . This conjecture can be broken into two parts. The first is to show that

the universal cover of such a manifold is S3 , which is the Poincaré conjecture, and then

the second part is to show that any free action of a finite group on S3 is equivalent

to an action by isometrics of S3 with its standard metric. In particular this involves

showing that the group is a subgroup of SO(4) . There have been many partial results

on this second part over the years, but it has proved to be a very difficult problem.

Type II: infinite cyclic fundamental group. It turns out that there is only one prime

closed 3 manifold satisfying this condition, and that is S1×S2 . This is also the only

orientable 3 manifold that is prime but not irreducible, where a 3 manifold M is

irreducible if every 2 sphere in M bounds a ball in M . For if M is reducible but prime

it must contain a nonseparating S2 . This has a product neighborhood S2×I , and the

union of this neighborhood with a tubular neighborhood of an arc joining S2×{0}
to S2×{1} in the complement of S2×I is diffeomorphic to the complement of a ball

in S1×S2 . This says that M has S1×S2 as a connected summand, so by primeness

M = S1×S2 .

Another special feature of S1×S2 is that it is the only prime orientable 3 manifold

with nontrivial π2 . This is a consequence of the Sphere Theorem, which says that for

an orientable 3 manifold M , if π2(M) is nonzero then there is an embedded sphere

in M that represents a nontrivial element of π2(M) . This sphere cannot bound a ball,

so M is reducible, hence if it is prime it must be S1×S2 .

Type III: infinite noncyclic fundamental group. Such a manifold M is a K(π,1) ,
or in other words, its universal cover is contractible. More generally, any irreducible

3 manifold M , not necessarily closed, with π1(M) infinite is a K(π,1) . For the uni-

versal cover M̃ is simply-connected and has trivial homology groups: By the Hurewicz

theorem H2(M̃) = π2(M̃) and π2(M̃) = π2(M) = 0 by the Sphere Theorem and the

irreducibility of M . Finally, H3(M̃) = 0 since M̃ is noncompact, and all higher homol-

ogy groups vanish since M̃ is a 3 manifold. So Whitehead’s theorem implies that M̃
is contractible.

The homotopy type of a K(π,1) is uniquely determined by its fundamental group,

so for a closed 3 manifold M to be a K(π,1) imposes strong restrictions on the group

π1(M) = π . For example, it implies that π1(M) must be torsionfree, since the cov-

ering space of M corresponding to a nontrivial finite cyclic subgroup Zn would be

a finite-dimensional K(Zn,1) CW complex, but this cannot exist since the homology

groups of a K(Zn,1) are nonzero in infinitely many dimensions, as one can choose

an infinite-dimensional lens space as a K(Zn,1) . One can also see that the only free

abelian group Zn that can occur as π1(M) is Z3 , the fundamental group of the 3 torus,

since the n torus is a K(Zn,1) and this has Hn nonzero and Hi zero for i > n . In

particular, there is no closed orientable 3 manifold K(π,1) with infinite cyclic fun-

damental group, which shows that S1×S2 is indeed the only prime closed orientable

3 manifold with π1 infinite cyclic.



Since the homotopy type of an irreducible closed K(π,1) 3 manifold is deter-

mined by its fundmental group, one may then ask whether the fundamental group

in fact determines the manifold completely. This is the 3 dimensional case of the

Borel conjecture, that a closed n manifold that is a K(π,1) is determined up to

homeomorphism by its fundamental group. (In high dimensions it is important to

say “homeomorphism” here rather than “diffeomorphism”.) No counterexamples are

known in any dimension. In the 3 dimensional case, Waldhausen proved the con-

jecture for a large class of manifolds known as Haken manifolds. These are the ir-

reducible compact orientable 3 manifolds M that contain an embedded nonsimply-

connected compact orientable surface S for which the map π1(S)→π1(M) induced

by the inclusion S↩M is injective. Such a surface S is said to be incompressible.

In case S has a nonempty boundary ∂S one requires that S is properly embedded

in M , meaning that S ∩ ∂M = ∂S . (A properly embedded disk that does not split off

a ball from M is usually considered to be incompressible as well.) It turns out that

for a Haken manifold M it is possible to performing a finite sequence of splitting op-

erations along incompressible surfaces, so that in the end the manifold M has been

reduced to a finite collection of disjoint balls. This sequence of splittings is called

a hierarchy for M . In favorable cases a hierarchy can be used to construct proofs

by induction over the successive steps in the hierarchy, and in particular this is how

Waldhausen’s theorem is proved.

It is still not clear whether a “typical” closed irreducible 3 manifold with infinite

π1 is a Haken manifold. Some manifolds that are Haken manifolds are:

Products F×S1 where F is a closed orientable surface.

More generally, fiber bundles over S1 with fiber a closed orientable surface.

More generally still, irreducible M with H1(M) infinite.

There are various infinite families of closed irreducible 3 manifolds with infinite π1

that have been shown not to be Haken manifolds, but they all seem to be manifolds

that are in some sense “small”. Perhaps all manifolds that are sufficiently large are

Haken. (Indeed, the original name for Haken manifolds was “sufficiently large”, be-

fore Haken became famous for the Four-Color Theorem.) It is still an open question

whether closed irreducible 3 manifolds with infinite π1 always have a finite-sheeted

covering space that is Haken.

Even if the Borel conjecture were proved for Type III prime 3 manifolds, this

would still be far from an explicit classification. One would want to know exactly

which groups occur as fundamental groups of these manifolds, and one would want

to have an efficient way of distinguishing one such group from another. But perhaps

there are just too many different manifolds to make such an explicit classification

feasible.

Seifert Manifolds

There is a special family of 3 manifolds called Seifert manifolds for which an

explicit classification was made early in the history of 3 manifolds, in the 1930s.

These manifolds are “singular fiber bundles” with base space a compact surface and

fibers circles. The fibering is locally trivial, as in an ordinary fiber bundle, except for

a finite number of isolated “multiple” fibers where the local model is the following.

Start with a product D2×I fibered by the intervals {x}×I . If we glue the two ends

D2×{0} and D1×{1} together by the identity map of D2 we would then have the

standard product fibering of the solid torus D2×S1 . Instead of doing this, we glue

the two ends together using a rotation of D2 through an angle of 2πp/q for some

pair of relatively prime integers p and q with q ≥ 2. The resulting quotient manifold

is still D2×S1 and the core interval {0}×I closes up to form a circle, but all the other

intervals {x}×I do not immediately close to form circles. Instead one has to follow

along q of these intervals before they close up to a circle. Thus we have the solid

torus decomposed into disjoint circles which are all approximately parallel locally,

but the central circle has multiplicty q in the sense that the projection of each nearby

circle onto this core circle is a q -to-1 covering space. If the core circle is deleted one

would have an actual fiber bundle, so there is just a single isolated singular fiber in

this fibering of D2×S1 by circles. In a compact Seifert manifold M one can have a

finite number of such singular fibers, all disjoint from ∂M , which, if it is nonempty,

consists of tori with product fiberings by circles. The base space of the fibering is the

quotient space of M obtained by identifying each circle fiber to a point. This is still a

compact surface, even at the images of the singular fibers. We are assuming that M
is orientable, but the base surface can be orientable or not. Since the singular fibers

are isolated and project to isolated points in the base surface, they have no effect on

orientability of the base.

The data specifying a Seifert fibering consists of:

The topological type of the base surface.

The number of multiple fibers and the fractions p/q specifying the local fibering

near each multiple fiber. In fact the value of p/q modulo 1 is enough to specify

the local fibering.

In case the base surface is closed, an “Euler number” specifying how twisted the

fibering is. As with ordinary circle bundles, this can be defined as the obstruction

to a section of the bundle.

Thus one obtains an explicit classification of all the different Seifert fiberings. It turns

out that in most cases the Seifert fibering of a Seifert manifold is unique up to diffeo-

morphism, and in fact up to isotopy. The exceptions can be listed quite explicitly, so

one has a very concrete classification of all Seifert manifolds up to diffeomorphism.

This includes also the information of which ones admit orientation-reversing diffeo-

morphisms.



It is a happy accident that all the spherical 3 manifolds are Seifert manifolds.

The base surface is S2 in each case, and there are at most three multiple fibers. The

Type II manifold S1×S2 is of course also a Seifert manifold, via the product fibering.

Most Seifert manifolds are of Type III. The only Seifert manifold that is not prime is

RP3 ]RP3 , the sum of two copies of real projective 3 space. (This manifold happens

to have S1×S2 as a 2 sheeted covering space, the only instance of a prime manifold

covering a nonprime manifold.)

Torus Decomposition

After the prime decomposition, it suffices to classify irreducible 3 manifolds.

These cannot be simplified by splitting along spheres, but one may ask whether they

can be simplified by splitting along the next-simplest surfaces, embedded tori. Split-

ting along a torus that lies inside a ball or bounds a solid torus is not likely to produce

a simpler manifold, as one can see already in the case of knotted tori in S3 . Such tori

are obviously compressible, however, so it seems more promising to try splitting along

incompressible tori. In fact, in an irreducible manifold M any embedded torus that

does not lie in a ball in M and does not bound a solid torus in M must be incompress-

ible. This is an easy consequence of the Loop Theorem, which says that for a properly

embedded compact orientable surface S ⊂ M , if the map π1(S)→π1(M) is not in-

jective then there is an embedded disk D ⊂ M with D ∩ S = ∂D such that the circle

∂D represents a nontrivial element of the kernel of the map π1(S)→π1(M) . (Often

this theorem is stated in the equivalent form that S is equal to ∂M or a subsurface

of ∂M .)

Splitting along incompressible tori turns out to work very nicely:

Torus Decomposition Theorem (Jaco-Shalen, Johannson). If M is an irre-

ducible compact orientable manifold, then there is a collection of disjoint incompress-

ible tori T1, ··· , Tn in M such that splitting M along the union of these tori produces

manifolds Mi which are either Seifert-fibered or atoroidal — every incompressible

torus in Mi is isotopic to a torus component of ∂Mi . Furthermore, a minimal such

collection of tori Tj is unique up to isotopy in M .

The collection of tori Tj could be empty. This will happen if M itself is Seifert-

fibered or atoroidal. It is possible to characterize the tori Tj intrinsically as the in-

compressible tori T ⊂ M that are isolated in the sense that every other incompressible

torus in M can be isotoped to be disjoint from T . Notice the strength of the unique-

ness statement: up to isotopy, not just up to diffeomorphism of M . This differs from

the prime decomposition where the spheres giving a splitting into primes are not at

all unique, even up to diffeomorphism of the manifold. Only the prime factors are

unique.

The Mi ’s that are Seifert-fibered could be further split along incompressible tori

into atoroidal pieces, but the resulting atoroidal pieces are usually not unique. To get

uniqueness it is essential to choose the collection of Tj ’s to be minimal. This subtlety

in the uniqueness statement is probably the reason why this theorem was discovered

only in the 1970s, since in hindsight one can see that it could have been proved in the

1930s when Seifert manifolds were first studied.

If the collection of tori Tj is nonempty, the manifolds Mi will have torus boundary

components. Unlike in the prime decomposition where we split along spheres and

there was a canonical way to fill in the newly-created boundary spheres with balls,

when we split along tori there is no canonical way to fill in the resulting boundary

tori and thereby stay within the realm of closed manifolds if the original M was a

closed manifold. The natural thing to try is to fill in the new boundary tori with

solid tori S1×D2 , but there are infinitely many essentially different ways to do this

since the glueing is achieved by a diffeomorphism of a torus and the group of isotopy

classes of diffeomorphisms of a torus is GL2(Z) , and only a relatively small number

of these diffeomorphisms extend over a solid torus. (We are essentially talking about

Dehn surgery here, which will be discussed in more detail later.) So it is best just to

leave the Mi as manifolds with boundary tori. This means that even if one is primarily

interested in closed manifolds, one is really forced to broaden one’s domain to include

manifolds with boundary tori.

The manifold M determines the Mi ’s uniquely, but there are many choices for

how to glue the Mi ’s together to reconstruct M . In the prime decomposition one had

only to worry about orientations to specify how to glue the pieces together, but here

the glueings are by diffeomorphisms of tori, so again there is a wide choice of ele-

ments of GL2(Z) , or SL2(Z) if orientations are specified, determining how to glue the

pieces Mi together. For a complete classification of the various manifolds that can

be obtained by glueing together a fixed collection of Mi ’s one needs to know which

collections of diffeomorphisms of the boundary tori of each Mi extend to diffeomor-

phisms of Mi . In case all the Mi ’s happen to be Seifert manifolds this can be figured

out, so the classification of the resulting manifolds M is known explicitly. This was

first worked out by Waldhausen, who called these manifolds graph manifolds, in ref-

erence to the graph that describes the combinatorial pattern for glueing together the

Mi ’s, the graph having a vertex for each Mi and an edge for each Tj .

After the Torus Decomposition Theorem, the remaining big problem is to classify

“general” prime 3 manifolds, those which are atoroidal and not Seifert-fibered. Exam-

ples of such manifolds can be found among the manifolds M which fiber over S1 with

fiber a closed orientable surface F of genus at least 2. Such a bundle is determined by

a diffeomorphism ϕ :F→F . If ϕ is isotopic to a diffeomorphism of finite order, then

M has an evident Seifert fibering, with circle fibers transverse to the surface fibers F .

Another special case is if ϕ leaves invariant some finite collection of disjoint nontriv-

ial circles in F , since such a collection gives rises to a set of incompressible tori in M
transverse to the fibers. In all remaining cases it turns out that M is atoroidal and



not a Seifert manifold. These “general” ϕ ’s are the subject of Thurston’s theory of

pseudo-Anosov surface diffeomorphisms.

There are many more examples. For example, the complement of an open tubular

neighborhood of a knot in S3 is an irreducible manifold with torus boundary, and this

manifold is atoroidal and not Seifert-fibered for perhaps 99 percent of the first million

knots.

Geometric examples, analogous to spherical manifolds, are the hyperbolic man-

ifolds, the quotients of hyperbolic 3 space H3 obtained by factoring out the action

of a group Γ of isometries of H3 , where the action is free and the quotient space

H3/Γ is compact, hence a closed manifold. More generally, one can allow the quotient

H3/Γ to be noncompact but have finite volume, since in this case the quotient is the

interior of a compact manifold whose boundary consists of tori, such as would arise

in a nontrivial torus decomposition of a closed manifold.

Hyperbolic manifolds are always irreducible and atoroidal, and no hyperbolic

manifold can be Seifert-fibered. Amazingly, Thurston conjectured that the converse

is also true:

Hyperbolization Conjecture: Every irreducible atoroidal closed 3 manifold that is

not Seifert-fibered is hyperbolic. Furthermore, the interior of every compact irreducible

atoroidal nonSeifert-fibered 3 manifold whose boundary consists of tori is hyperbolic.

Thurston proved this in many cases, for example for nonclosed manifolds, sur-

face bundles, and more generally all Haken manifolds. In addition to these general

theorems many concrete examples have been worked out using computer programs

that have been developed for this purpose. The evidence in favor of the conjecture

seems quite strong.

Hyperbolic manifolds must have infinite fundamental group since they have fi-

nite volume but their universal cover H3 has infinite volume. This means that the

hyperbolization conjecture implies the Poincaré conjecture, as there are no coun-

terexamples to the Poincaré conjecture among Seifert manifolds, and manifolds that

contain incompressible tori have infinite fundamental group. One could make a more

restricted form of the hyperbolization conjecture that would not imply the Poincaré

conjecture by adding the hypothesis of infinite fundamental group.

If two hyperbolic 3 manifolds have isomorphic fundamental groups, then they

are in fact isometric, according to the Mostow Rigidity Theorem. In particular, this

says that hyperbolic structures are unique, if they exist. It also means that the hy-

perbolization conjecture implies the Borel conjecture in dimension 3, that K(π,1)
3 manifolds are determined up to homeomorphism by their fundamental groups.

Much is known about hyperbolic manifolds, so the hyperbolization conjecture,

if true, would give a great deal of information about individual 3 manifolds. How-

ever, even if the hyperbolization conjecture were proved, we would still be a some

distance away from a really explicit classification of 3 manifolds since the number of

hyperbolic manifolds is so large.

Dehn Surgery

It is tempting to try to get a more complete picture of the set of all closed ori-

entable 3 manifolds by putting some sort of global structure on this set. The number

of compact 3 manifolds is countable since there are just countably many finite sim-

plicial complexes, so perhaps there is some kind of “variety” whose rational points

correspond bijectively, in some meaningful way, with all the diffeomorphism classes

of closed orientable 3 manifolds.

One possible way to implement this vague idea is to use Dehn surgery, which is

defined in the following way. Fix a closed orientable manifold M and choose a link

L in M consisting of n disjoint embedded circles L1, ··· , Ln . These have disjoint

tubular neighborhoods N(Li) that are solid tori S1×D2 . Remove the interiors of these

solid tori from M and then glue the solid tori back in by means of diffeomorphisms

∂N(Li)→∂(M − int(N(Li))) . One can think of glueing in a solid torus S1×D2 as

first glueing in a meridian disk {x}×D2 and then glueing in a ball. All that matters is

how the meridian disk is glued in, since glueing in a ball is canonical. To specify how

the disk is glued in it suffices to specify the curve its boundary attaches to, and in a

torus this curve will be, up to isotopy, p times a meridian plus q times a longitude

for some pair (p, q) of relatively prime integers, which can conveniently be regarded

as a fraction, or slope, p/q , possibly 1/0. Doing this for each solid torus N(Li) in

turn, we obtain a manifold ML(p1/q1, ··· , pn/qn) which is said to be obtained from

M by Dehn surgery on L . This gives a set of manifolds parametrized by the rational

n torus (Q ∪ {1/0})n . To give this set of manifolds a name, let us call it a “Dehn

variety” V(M,L) . (There is an ambiguity in the choice of longitudes, but this just

corresponds to a simple change of coordinates in V(M,L) .)
As an example, if we take M to be a product bundle F×S1 with base F a compact

orientable surface and we choose L to be a collection of n fibers {x}×S1 , then the

Seifert manifolds obtained by replacing these fibers by possibly multiple fibers are

almost exactly the same as the manifolds obtained by Dehn surgery on L . The only

exceptions are the Dehn surgeries in which a meridian disk is glued in along a curve

isotopic to a circle fiber of F×S1 . These exceptional surgeries produce connected

sums of Seifert manifolds with S1×S2 . In a similar fashion, the Seifert manifolds

over a nonorientable base surface can be obtained by Dehn surgery on fibers of a

twisted circle bundle.

The first theorem about Dehn surgery is that if one fixes M and varies the link L
and the slopes pi/qi , then one obtains all closed orientable 3 manifolds. In particular

this happens when M = S3 and one is doing Dehn surgery on links in the usual

sense. No single V(M,L) can contain all 3 manifolds since the homology groups of

manifolds in V(M,L) have bounded ranks. Any two V(M,L) ’s are contained in a third,



so the union of all Dehn varieties can be thought of as a sort of an infinite-dimensional

Dehn variety which consists of all closed orientable 3 manifolds.

The complicating factor with Dehn varieties is of course that the surjections

(Q ∪ {1/0})n→V(M,L) , (p1/q1, ··· , pn/qn),ML(p1/q1, ··· , pn/qn) , need not be

injective, so Dehn varieties are not just rational tori but some kind of singular objects.

A special case is Dehn curves, the varieties V(M,L) when L has just one compo-

nent. Two manifolds in the same Dehn curve have a lot in common: the complement

of a knot, in fact. Here are some interesting theorems and conjectures:

No Dehn curve passes through S3 more than once. (Theorem of Gordon-Luecke)

More generally, no Dehn curve through S3 passes through a homotopy sphere at

another point of the curve. (The Property P conjecture)

There is a unique Dehn curve though S3 and S1×S2 , the Dehn curve for the trivial

knot in S3 . (Property R, proved by Gabai. The other points on this curve are lens

spaces.)

Every other Dehn curve through S3 passes through manifolds with finite π1 at

most three times. (Theorem of Culler-Gordon-Luecke-Shalen. There are examples

showing the number “three” is best possible.)

Not much seems to have been done yet with Dehn varieties of higher dimension.

References for further reading

As a primary source for the more basic topological aspects of the theory, including

prime decomposition, torus decomposition, and Seifert manifolds, we suggest

A Hatcher. Basic Topology of 3-Manifolds. Unpublished notes available online at

http://www.math.cornell.edu/˜hatcher

This does not include Waldhausen’s theorem about Haken manifolds, which can be

found in

J Hempel. 3-Manifolds. Annals of Math Studies 86. Princeton University Press,

1976.

A book that contains an exposition of the classification of spherical 3 manifolds is

W Thurston. Three-Dimensional Geometry and Topology. Princeton University

Press, 1997.


